Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e191120, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394048

ABSTRACT

Abstract The aim of the current study was to assess the physicochemical characteristics and wound healing activity of chitosan-polyvinyl alcohol (PVA) crosslinked hydrogel containing recombinant human epidermal growth factor (rh-EGF) or recombinant mouse epidermal growth factor (rm-EGF). The hydrogels were prepared and analyses were made of the morphological properties, viscosity, water absorption capacity, mechanical and bio-adhesive properties. The viscosity of the formulations varied between 14.400 - 48.500 cPs, with the greatest viscosity values determined in K2 formulation. F2 formulation showed the highest water absorption capacity. According to the studies of the mechanical properties, H2 formulation (0.153±0.018 N.mm) showed the greatest adhesiveness and E2 (0.245±0.001 mj/cm2) formulation, the highest bio-adhesion values. Hydrogels were cytocompatible considering in vitro cell viability values of over 76% on human keratinocyte cells (HaCaT, CVCL-0038) and of over 84% on human fibroblast cells (NIH 3T3, CRL-1658) used as a model cell line. According to the BrdU cell proliferation results, B1 (197.82±2.48%) formulation showed the greatest NIH 3T3 and C1 (167.43±5.89%) formulation exhibited the highest HaCaT cell proliferation ability. In addition, the scratch closure assay was performed to assess the wound healing efficiency of formulation and the results obtained in the study showed that F2 formulation including PEGylated rh-EGF had a highly effective role.


Subject(s)
Wound Healing , Hydrogels/analysis , Chitosan/chemical synthesis , Epidermal Growth Factor , Polyvinyl Alcohol/pharmacology , Wounds and Injuries/classification , In Vitro Techniques/methods , Cell Culture Techniques/methods , Cell Proliferation/genetics , Absorption
SELECTION OF CITATIONS
SEARCH DETAIL